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Setting

Let X be a countable vertex set. Any functionm: X — (0, o0) defines a measure of full support on
X called the vertex measure. A graph over (X, m) is a pair (b, ¢), for killing term ¢: X — [0, 00) and
edge weight b: X x X — [0, 00), such that b is symmetric, has no loops, and » _, c x b(z,y) < oo
forall x € X.

For a subset O C X and r € N, define the edge boundary of the ball radius r

OB(r)= " > blzy)
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Weak spherical symmetry

We say that a function f € C(X) is spherically symmetric with respect to O C X if forall r € N,
f(x)= fy) forallxz,y € S,. Forx € S, we let

K:l:('CE)_m%x) Z b(ﬂ?,y)
YESr+1

denote the outer and inner vertex degrees, respectively. We also define ¢(x) = c(x)/m(x).

We say that a locally finite connected graph (b, c) over (X, m) is weakly spherically symmetric if
there exists a finite set O C X such that k+ and ¢ are spherically symmetric.

Energy form

Define the energy form

Q(f.a) =5 3 bla.y)(F@) — FW)gle) — glw) + 3 elw)f(x)gl)

andlet D ={f € C(X) | Q(f) < oo} denote the space of functions of finite energy.

Let Q'P) be the restriction of @ to D(QP)) = CC(X)”'HQ where ngHQQ = |lo||? + Q(y) is the form

norm. Let Q) denote the restriction of Q to D(QV)) = D N ¢2(X, m). We say that a graph
satisfies form uniqueness if Q<D> — QW).

We say that u € F is a-harmonic for a € R if (A 4+ a)u = 0.

Technical lemma (3.2 in [3])

Failure of form unigueness is equivalent to existence of a nontrivial w > 0 and a > 0 with u €
D N (X, m) such that (A + a)u = 0.

Operators

Capacity of Cauchy boundary

Welet F ={f € C(X) | }_,ex bz, y)|f(y)| <oc}, andfor f € Fandz € X, we let

N b, ) (F(z) — () +

m(x) —~

Af(x) =

denote the formal Laplacian.
For ¢,y € C.(X) we get the Green's formula Q(p,¥) = (Ap, ) = (p, AY).

We define the formal averaging operator as

Af(@) = = 3 flam(z)

rESy
for z € S, and denote the restriction of A to £2(X, m) by A.

A locally finite graph (b, ¢) over (X, m) is weakly spherically symmetric if and only if AA = AA on
Ce(X) (Lemma 9.8 in [3]).

Characterization via graph structure

Let (b, ¢) be a weakly spherically symmetric graph over (X, m). Then failure of form unigqueness
1
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©.9)
s equivalent to (¢ +m)(X) < o and Z < 00.
r=0

Lemma: Averaging and energy

Let (b, ¢) be a weakly spherically symmetric graph over (X, m). Ifv € C(X), then Q(Av) < Q(v).
In particular, if v € D, then Av € D.

Lemma: Spherically symmetric energy

Let (b, ¢) be a weakly spherically symmetric graph over (X, m). Let u be spherically symmetric,
non-zero and satisfying (A + a)u = 0 for a > 0. Then u € D if and only if

c(X) < o0 and 2 9B (r)
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Figure 1. N with m(N) = oo has form uniqueness

. § rm (K) <
N Bl e LI
WO ' R o A
° ® ® ® d‘ Z b\*r,‘,‘n\\ Cw
=0
0 \I‘\ 1\1_ 1\3

Figure 2. N without form uniqueness

Ametricdy : X x X — [0,00) is a path metric if o : X x X — [0,00) satisfies o(x,y) > 0 if and
only if b(z,y) > 0, and dy(x,y) is the infimum of the o-lengths of the paths connecting x and .
In addition, d, is called strongly intrinsic if

> bw,y)o’(z,y) < m(z)

yeX
forall z € X.

Foraset K C X, we let

cap(K) = inf{|Jullg | v € D(QW)) with u > 1 on K?}.
Foraset K C X, we let

cap(K) = inf{cap(U) | K C U with U C X" open}.

let 9, X = X* \ X denote the Cauchy boundary of the graph.

Characterization via capacity

Let (b, ¢) be a weakly spherically symmetric graph over (X, m). Let dy be a strongly intrinsic
path metric. Then failure of form uniqueness is equivalent to 0 < cap(9ds(X)) < oo.

Weakly spherically symmetric ends

A graph (b, ¢) over (X, m) is a a graph with weakly symmetric ends (for form uniqueness) if X1 C X
can be chosen so that for Xy = X'\ X,

1) Q" =™
(2) Degg is bounded.
(3) (bo, c2) over (X9, mg9) is a disjoint union of weakly spherically symmetric graphs.

Stability

Let (b, ¢) over (X, m) be a graph with weakly spherically symmetric ends for form uniqueness.
Then failure of form uniqueness on X is equivalent to failure of form unigueness on one weakly
spherically symmetric subgraph in Xbo.

Figure 3. Gluing the two copies of N described earlier is not form unique.
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